Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 20(2): e2306053, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37658500

RESUMEN

Employing high voltage cobalt-free spinel LiNi0.5 Mn1.5 O4 (LNMO) as a cathode is promising for high energy density and cost-effectiveness, but it has challenges in all-solid-state batteries (ASSBs). Here, it is revealed that the limitation of lithium argyrodite sulfide solid electrolyte (Li6 PS5 Cl) with the LNMO cathode is due to the intrinsic chemical incompatibility and poor oxidative stability. Through a careful analysis of the interphase of LNMO, it is elucidated that even the halide solid electrolyte (Li3 InCl6 ) with high oxidative stability can be decomposed to form resistive interphase layers with LNMO in ASSBs. Interestingly, with Fe-doping and a Li3 PO4 protective layer coating, LNMO with Li3 InCl6 displays stable cycle performance with a stabilized interphase at a high voltage (≈4.7 V) in ASSBs. The enhanced interfacial stability with the extended electrochemical stability window through doping and coating enables high electrochemical stability with LNMO in ASSBs. This work provides guidance for employing high-voltage cathodes in ASSBs and highlights the importance of stable interphases to enable stable cycling in ASSBs.

2.
Angew Chem Int Ed Engl ; 62(50): e202313437, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37931064

RESUMEN

While it is widely recognized that the operating temperature significantly affects the energy density and cycle life of lithium-ion batteries, the consequence of electrode-electrolyte interphase chemistry to sudden environmental temperature changes remains inadequately understood. Here, we systematically investigate the effects of a temperature pulse (T pulse) on the electrochemical performance of LiNi0.8 Mn0.1 Co0.1 O2 (NMC811) pouch full cells. By utilizing advanced characterization tools, such as time-of-flight secondary-ion mass spectrometry, we reveal that the T pulse can lead to an irreversible degradation of cathode-electrolyte interphase chemistry and architecture. Despite negligible immediate impacts on the solid-electrolyte interphase (SEI) on graphite anode, aggregated cathode-to-anode chemical crossover gradually degrades the SEI by catalyzing electrolyte reduction decomposition and inducing metallic dead Li formation because of insufficient cathode passivation after the T pulse. Consequently, pouch cells subjected to the T pulse show an inferior cycle stability to those free of the T pulse. This work unveils the effects of sudden temperature changes on the interphase chemistry and cell performance, emphasizing the importance of a proper temperature management in assessing performance.

3.
Small ; 19(49): e2305055, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37568247

RESUMEN

High-nickel layered oxide cathodes and lithium-metal anode are promising candidates for next-generation battery systems due to their high energy density. Nevertheless, the instability of the electrode-electrolyte interphase is hindering their practical application. Localized high-concentration electrolytes (LHCEs) present a promising solution for achieving uniform lithium deposition and a stable cathode-electrolyte interphase. However, the limited choice of diluents and their high cost are restricting their implementation. Four novel cost-effective diluents and their performance with highly reactive LiNiO2 cathode and Li-metal anode are reported here. The results show that all the LHCE cells exhibit a Coulombic efficiency of >99.38% in Li | Cu cells and a capacity retention of >85% in Li | LiNiO2 cells after 250 cycles. Advanced characterizations unveil that the stable cell operation is due to well-tuned electrode-electrolyte interphases and Li deposition morphology. In addition, online electrochemical mass spectroscopy and differential scanning calorimetry reveal that the gas generation and heat-release are greatly reduced with the LHCEs presented. Overall, the study provides new insights into the role of diluents in LHCEs and offers valuable guidance for further optimization of LHCEs for high energy density lithium-metal batteries.

4.
Angew Chem Int Ed Engl ; 62(43): e202307243, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37294381

RESUMEN

LiNiO2 -based high-nickel layered oxide cathodes are regarded as promising cathode materials for high-energy-density automotive lithium batteries. Most of the attention thus far has been paid towards addressing their surface and structural instability issues brought by the increase of Ni content (>90 %) with an aim to enhance the cycle stability. However, the poor safety performance remains an intractable problem for their commercialization in the market, yet it has not received appropriate attention. In this review, we focus on the gas generation and thermal degradation behaviors of high-Ni cathodes, which are critical factors in determining their overall safety performance. A comprehensive overview of the mechanisms of outgassing and thermal runaway reactions is presented and analyzed from a chemistry perspective. Finally, we discuss the challenges and the insights into developing robust, safe high-Ni cathodes.

5.
Angew Chem Int Ed Engl ; 62(15): e202301241, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36781391

RESUMEN

The practical viability of high-nickel layered oxide cathodes is compromised by the interphasial and structural degradations. Herein, we demonstrate that by applying an in situ interweaved binder, the cycling stability of high-nickel cathodes can be significantly improved. Specifically, the results show that the resilient binder network immobilizes the transition-metal ions, suppresses electrolyte oxidative decomposition, and mitigates cathode particles pulverization, thus resulting in suppressed cathode-to-anode chemical crossover and ameliorated chemistry and architecture of electrode-electrolyte interphases. Pouch full cells with high-mass-loading LiNi0.8 Mn0.1 Co0.1 O2 cathodes achieve 0.02 % capacity decay per cycle at 1 C rate over 1 000 deep cycles at 4.4 V (vs. graphite). This work demonstrates a rational structural and compositional design strategy of polymer binders to mitigate the structural and interphasial degradations of high-Ni cathodes in lithium-ion batteries.

6.
ACS Appl Mater Interfaces ; 15(1): 1247-1255, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36574779

RESUMEN

High-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is a promising next-generation cathode material due to its structural stability, high operation voltage, and low cost. However, the cycle life of LNMO cells is compromised by detrimental electrode-electrolyte reactions, chemical crossover, and rapid anode degradation. Here, we demonstrate that the cycling stability of LNMO can be effectively enhanced by a high-energy laser treatment. Advanced characterizations unveil that the laser treatment induces partial decomposition of the polyvinylidene fluoride binder and formation of a surface LiF phase, which mitigates electrode-electrolyte side reactions and reduces the generation of dissolved transition-metal ions and acidic crossover species. As a result, the solid electrolyte interphase of the graphite counter electrode is thin and is composed of fewer electrolyte decomposition products. This work demonstrates the potential of laser treatment in tuning the surface chemistry of cathode materials for lithium-ion batteries.

7.
Adv Mater ; 33(32): e2100804, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34219283

RESUMEN

Bulk, surface, and interfacial instabilities that impact the cycle and thermal performances are the major challenges with high-energy-density LiNi1- x - y Mnx Coy O2 (NMC) cathodes with high nickel contents. It is generally believed that the instabilities and performance losses become exponentially aggravated as the nickel content increases. Disparate from this prevailing belief, it is herein demonstrated that NMC cathodes with higher Ni contents may imply better overall stability than "lower-Ni" cathodes under an identical degree of delithiation (charging) conditions. With two representative cathodes, LiNi0.8 Mn0.1 Co0.1 O2 and LiNiO2 , a systematic investigation into their stabilities with control of the degree of delithiation is presented. Electrochemical tests indicate that LiNiO2 displays better cyclability than LiNi0.8 Mn0.1 Co0.1 O2 at the same delithiation state. Comprehensive structural and interphase investigations unveil that the inferior cyclability of LiNi0.8 Mn0.1 Co0.1 O2 predominantly results from aggravated parasitic reactions, and the interphase stability may be more critical than lattice stability in dictating cyclability. Also, LiNiO2 delivers similar or better thermal behavior than LiNi0.8 Mn0.1 Co0.1 O2 . The findings demonstrate a strong correlation of the stability of NMC cathodes to the degree of delithiation state rather than the Ni content itself, highlighting the importance of reassessing the true implications of Ni content and structural and interphasial tuning on the stabilities of NMC cathodes.

8.
ACS Appl Mater Interfaces ; 13(13): 15324-15332, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33760578

RESUMEN

High-Ni layered oxides with Ni contents greater than 90% are promising cathode candidates for high-energy-density Li-ion batteries. However, drastic electrode-electrolyte reactions and mechanical degradation issues limit their cycle life and practical viability. We demonstrate here that LiNi0.94Co0.04Zn0.02O1.99 (NCZ), obtained by incorporating 2 mol % Zn2+ into an ultrahigh-Ni baseline cathode material LiNi0.94Co0.06O2 (NC), delivers superior cell performance. NCZ retains 74% of the initial capacity after 500 cycles in a full cell assembled with a graphite anode, outperforming NC (62% retention). NCZ also possesses a higher average discharge voltage relative to NC with an outstanding average voltage retention of over 99% after 130 cycles in half cells. Bulk structural investigations unveil that Zn doping promotes a smoother phase transition, suppresses anisotropic lattice distortion, and maintains the mechanical integrity of cathode particles. Furthermore, NCZ shows an enhanced interphase stability after long-term cycling, in contrast to the seriously degraded surface chemistry in NC. This work provides a practically viable approach for designing higher-energy-density high-Ni layered oxide cathodes for lithium-ion batteries.

9.
ACS Appl Mater Interfaces ; 12(6): 7277-7284, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31961644

RESUMEN

As a parent compound of Li-rich electrodes, Li2MnO3 exhibits high capacity during the initial charge; however, it suffers notoriously low Coulombic efficiency due to oxygen and surface activities. Here, we successfully optimize the oxygen activities toward reversible oxygen redox reactions by intentionally introducing protons into lithium octahedral vacancies in the Li2MnO3 system with its original structural integrity maintained. Combining structural probes, theoretical calculations, and resonant inelastic X-ray scattering results, a moderate coupling between the introduced protons and lattice oxygen at the oxidized state is revealed, which stabilizes the oxygen activities during charging. Such a coupling leads to an unprecedented initial Coulombic efficiency (99.2%) with a greatly improved discharge capacity of 302 mAh g-1 in the protonated Li2MnO3 electrodes. These findings directly demonstrate an effective concept for controlling oxygen activities in Li-rich systems, which is critical for developing high-energy cathodes in batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...